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Abstract—Bipartite graphs are commonly used to model rela-
tionships between two distinct types of entities, such as customer-
product relationships in e-commerce platforms and protein-
protein interactions in bioinformatics. Enumerating all maximal
bicliques from a bipartite graph is a fundamental graph mining
problem that has been widely used in many real-world applica-
tions including community search and spam detection. Existing
algorithms for maximal biclique enumeration can struggle to
scale to large graphs with a vast number of maximal bicliques.
In this paper, we propose a novel and highly-efficient algorithm
for maximal biclique enumeration in bipartite graphs using prefix
trees. Specifically, a prefix tree is a data structure that stores lists
of elements as paths in the tree, and we observe that a maximal
biclique can be represented uniquely by the vertices in one of its
vertex layers and stored compactly in prefix trees. The process of
our algorithm is divided into two steps. First, we find the lower
layer vertices of all maximal bicliques and organize them in a
prefix tree (i.e., the result tree). During this step, we transform the
original time-consuming operations of checking maximality and
filtering candidates for vertex sets into determining uniqueness
and performing extraction from a prefix tree at each level of
the recursion. Second, we use the result tree to obtain the upper
layer vertices of the maximal bicliques by computing the common
neighbors of vertices in the tree. In this step, we further optimize
the computation for intersections of vertex sets by compressing
the neighbors of each vertex and memoization. In addition, we
also propose a pre-processing method based on the order of
traversal on the prefix tree to reduce memory usage. We conduct
extensive experiments on 10 real-world datasets, and the results
demonstrate that the proposed algorithm outperforms existing
solutions by up to one order of magnitude.

Index Terms—graph mining, bipartite graph, maximal bi-
clique, prefix tree

I. INTRODUCTION

Bipartite graphs are widely used to model relationships be-
tween two disjoint sets of entities, such as people-location [1],
[2], author-paper [3], [4] and customer-product [5], [6]. The
vertices are divided into two layers representing distinct sets
of entities, and the edges connecting the layers signify the
relationships between them. A complete bipartite subgraph,
also referred to as a biclique, is a well-researched pattern
where each vertex in one layer has edges connecting it to
every vertex in the other layer within the subgraph.

For instance, Figure 1 illustrates an example bipartite graph
comprising 5 vertices in the upper layer U , 6 vertices in the
lower layer V , and 21 edges. One biclique in this graph is
formed by vertices u2, u4, u5 and v2, v4, v5, along with 9
edges. It is considered maximal as it cannot be fully contained
within any other biclique. Biclique is an important component
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Fig. 1: A maximal biclique in a bipartite graph

in dense subgraph discovery [7]. Finding bicliques has nu-
merous applications such as community search [8], [9], text
mining [10], [11], GNN Information Aggregation [12], and
social recommendation [13], [14]. In addition, more and more
research in bipartite graphs needs to find maximal bicliques
as a foundation [15]–[17]. However, the number of maximal
bicliques can grow exponentially to the size of the graph [18],
which makes the problem very challenging.

In recent years, many algorithms have been proposed
for solving the maximal biclique enumeration (MBE) prob-
lem [19]–[22]. Among them, iMBEA [19] is inspired by the
maximal clique enumeration problem in unipartite graphs [23],
which uses a vertex set P for keeping candidate vertices and
another set Q for avoiding the redundancy. Given a bipartite
graph G(U, V,E), the entire algorithm is executed in recursion
by maintaining a biclique B(L ∈ U,R ∈ V ) at each level
and starting with an empty biclique where it treats all vertices
in U as the candidates. For each level, the algorithm tries
to add vertices from P into L to check if it can become a
new maximal biclique. If some vertices in Q can be added
to L to enlarge the biclique, the newly generated biclique is
redundant and it goes to check the next candidate vertex. Upon
this procedure, PMBE [21] employs the single optimal pivot
strategy [24] for pruning in biclique scenario. FMBE [20]
improves the approach of checking redundancy and reduces
the search space by selecting a starting vertex. ooMBEA [22]
concentrates on the order of vertices, introducing the unilateral
order and batch-pivots technique to accelerate the enumeration.

Nevertheless, these optimizations do not change the core
workflow of MBE, and none of them focuses on improving
efficiency by organizing the processed data. This motivates
us to introduce new data structures for solving the MBE
problem. In the literature, the prefix tree is a tree-based data
structure storing lists of elements, where the common prefixes
are merged to reduce memory usage. Traditionally, it is often
used in the field of patterns matching and indexing [25]–[27].
In addition, some recent works [28], [29] use it for computing
set containment relationships.



Notation Definition
G a bipartite graph

U(G), V (G) the vertex set of upper (lower) layer of G
E(G) the edge set of G

u, v, x, y vertices in the bipartite graph
u ≺ u′ precedence of upper vertices in the visiting order

dmax, d2max maximum degree (2-hop degree) of one vertex
X,Y vertex sets in the bipartite graph

B(X,Y ) a biclique composed of vertices X and Y
Γ(x),Γ(X) the neighbors (the common neighbors) of x (X)
Tcand, Tres prefix trees composed of lower vertices

TABLE I: Notations and their definitions

In this paper, we propose novel enumeration algorithms with
prefix trees. We observe that finding all maximal bicliques can
be achieved by finding all the lists of vertices in one layer
and then completing the other layer. Since prefix trees can
store elements (i.e., vertices) compactly, we build prefix trees
by these lists and transform the computations of vertex sets
into operations on trees. Two kinds of prefix trees are used
in our methods, a candidate tree stores the candidate maximal
bicliques at each level of the recursion, and a result tree keeps
the intermediate results in the lower layer for later completion.
The same common prefixes are merged as one path from the
root in prefix trees, hence, both the memory and traversing
time are saved.

We present our methods, MBET and MBETM, with efficient
extraction for the candidate trees and completion of maximal
bicliques by traversing the result trees. As our approach is
a trade-off with memory for execution time, we also adopt
the techniques of memoization and neighbors compression
to reduce redundancy, and introduce other optimizations to
improve the effectiveness and the space usage. In summary,
our principal contributions are listed as follows.

• We propose a novel algorithm to solve the maximal bi-
clique enumeration problem with the prefix tree structure.
The new workflow divides the enumeration into two steps,
including storing intermediate results in prefix trees and
completing the maximal bicliques using prefix trees.

• We adopt optimizations in the two steps. We transform
the intersections of vertex sets in the first step into
operations on prefix trees, and we propose optimizations
for computing common neighbors by memoization and
compression in the second step.

• We further optimize the memory usage by a pre-process
based on the order of traversal in a prefix tree.

• We conduct comprehensive experiments on ten real-world
datasets to validate the efficiency of MBET and MBETM.
The results show that our approaches achieve better
execution time in all datasets and outperform existing
algorithms by up to one order of magnitude.

For reproducibility purposes, the source code of this paper
is released at https://github.com/Haizs/MBET.

II. PRELIMINARIES

We consider an undirected and unweighted bipartite graph
G = (U, V,E) where U and V are the upper layer and
lower layer of G that contain two sets of disjoint vertices

Algorithm 1: Core workflow of MBE
Input : G = (U, V,E)
Output: All maximal bicliques in G

1 foreach u ∈ U(G) do
2 Enumerate({u}, Γ(u), ⋃v∈Γ(u) Γ(v))

3 Procedure Enumerate(X,Y, P)
4 foreach v ∈ P do
5 X ′ ← X ∪ {v}, Y ′ ← Y ∩N(v), P ← P \ {v}
6 check the maximality of B(X ′, Y ′)
7 if B(X ′, Y ′) denotes a new maximal biclique then
8 X ′ ← X ′ ∪ {v′ ∈ P | N(v′) ∩ Y ′ = Y ′}
9 report B(X ′, Y ′)

10 P ′ ← {v′ ∈ P \X ′ | N(v′) ∩ Y ′ ̸= ∅}
11 if P ′ ̸= ∅ then
12 Enumerate(X ′, Y ′, P ′)

respectively, and E ⊆ U ×V is the set of edges. The vertices
in the upper layer (lower layer) are called upper vertices
(lower vertices) respectively, and each vertex is assigned with
a unique vertex ID. Table I summarizes all the frequently
used notations. Given a vertex x ∈ G, we represent the set
of neighbors of x as Γ(x). Furthermore, when we refer to a
set X of vertices, Γ(X) denotes the common neighbors of all
vertices in X , i.e., Γ(X) = ∩x∈XΓ(x). Conveniently, we use
X for a vertex set in the upper layer and Y for the lower.

Definition 1 (Maximal biclique): Given a bipartite graph G,
a biclique B(X,Y ) is a complete bipartite subgraph, i.e., X ⊆
U(G), Y ⊆ V (G), and ∀(x ∈ X, y ∈ Y ), (x, y) ∈ E(G). A
biclique is a maximal biclique if it cannot be contained by any
other biclique.

Problem Statement. Given a bipartite graph G, we aim to
enumerate all the maximal bicliques in G.

A. Warm Up

In bipartite graphs, recent solutions for maximal biclique
enumeration [19]–[22] share a core workflow which expands
the upper layer during a recursive procedure to enumerate
all maximal bicliques. As shown in Algorithm 1, the main
procedure is performed recursively and accepts three argu-
ments X , Y , and P . Here X and Y are the sets of upper
and lower vertices of a biclique B(X,Y ), respectively, and
P is the set of candidate upper vertices that can be used to
generate a new biclique B(X ′, Y ′). During each recursion,
we generate X ′ by adding one candidate vertex v ∈ P into
X (Lines 4 - 5). Correspondingly, we can get the lower
vertex set Y ′ by computing the intersection of Y and N(v).
We need to check whether B(X ′, Y ′) can become a new
maximal biclique (Line 6) and then enlarge X ′ by adding
the vertices in P that have all vertices in Y ′ as its neighbors
(Line 8). After the biclique is found, a new set of vertices P ′

is created with the remaining candidates that have neighbors
in Y ′ (Line 10), and it will be used as the set of candidate
upper vertices in the next recursion level (Line 12). Figure 2a
shows an example of finding maximal bicliques containing
u1 in Figure 1. Each node in the recursion tree denotes a



B1:{{u1}, {v1, v2, v3, v5, v6}}
P1:{u2, u3, u4, u5}

B2:{{u1, u2}, {v1, v2, v5, v6}}
P2:{u3, u4, u5}

B3:{{u1, u2, u3, u4}, {v2, v6}}
P3:{u5}
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Fig. 2: Partial recursion tree of maximal biclique enumeration

subproblem with new maximal biclique Bi(X,Y ) and its
corresponding candidate set Pi. The procedure tries to move
each candidate vertex u ∈ Pi into X and check whether the
expansion on the upper layer results in a new maximal biclique
Bj(X

′ ⊇ X∪{u}, Y ′ = Y ∩Γ(u)). The lower layer is reduced
to the intersection of neighbors of the expanded vertex, and a
new candidate set Pj = {u′ ∈ Pi \X ′ | Γ(u′) ∩ Y ′ ̸= ∅} is
created with other candidates that have neighbors in Y ′.

During the recursion, a subproblem with new candidates
is derived only when it finds a new maximal biclique. For
instance, P2 has three candidate vertices u3, u4, u5, but adding
only u3 to the upper layer of B2 does not lead to a maximal
biclique, prompting the expansion of B3 by both u3 and
u4. Previous works adopt different methods to complete the
expansion and check the maximality. After adding a candidate
vertex u to the upper layer and reducing the lower layer Y ′,
FMBE [20] and PMBE [21] directly obtain the complete upper
layer by computing X ′ = Γ(Y ′) and determine the maximality
by verifying X ′ ⊆ X∪Pi. In iMBEA [19] and ooMBEA [22],
an additional vertex set Q is introduced to keep track of
previously used candidate vertices. A new maximal biclique
is reported only if no vertex in Q has all lower vertices as
neighbors (i.e., ∄u ∈ Q,Y ′ ⊆ Γ(u)), and the complete upper
layer X ′ = X∪{u}∪{u′ ∈ Pi | Γ(u′)∩Y ′ = Y ′} is computed
by further examining the remaining candidate vertices.

To mitigate the redundant computation of non-maximal
bicliques, existing solutions employ pivot-based prunings [21],
[22] to skip certain candidate vertices based on the contain-
ment relationships of their neighbors, and utilize optimized
orders [20], [22] for candidate vertex enumeration within
each subproblem. However, these approaches still encounter
challenges in handling the vast number of maximal bicliques.
We identify main weaknesses of existing solutions as follows.

As the enumeration process tries to expand the biclique
by candidate vertices in each recursive subproblem, multi-
ple candidate vertices can be added simultaneously for one
candidate maximal biclique. Additional work is required to
compute the complete set of upper vertices. In iMBEA and
ooMBEA, all candidate vertices are examined every time. In
PMBE and FMBE, the complete upper layer is also used to
check for maximality which implies that both layers need
to be obtained even if the biclique is not a new maximal
one, leading to many redundant computations. On the other
hand, the intersection of vertex sets during the derivation
of subproblems is always achieved by comparing pairs of

elements continuously. All the existing solutions lack the
opportunity to obtain the intersection results by necessary
elements directly.

III. TWO-STEP ENUMERATION WITH PREFIX TREE

A. Lower-layer-based Enumeration

In this paper, we try to enumerate all maximal bicliques
based on the lower layer. As discussed in the recursion
presented in §II-A, adding a candidate vertex u into B(X,Y )
results in a maximal biclique whose lower layer is Y ′ =
Y ∩ Γ(u). Then, its upper layer can be directly computed by
the common neighbors of Y ′ (i.e., X ′ = Γ(Y ′)). According
to this observation, we have the following lemma.

Lemma 1: A maximal biclique can be represented by
a unique set of lower vertices, which is composed of the
common neighbors of some vertices in the upper layer.

Proof: We discuss an example where Y is the non-empty
set of common neighbors of an upper vertex set X . Relatively,
the common neighbors of Y must have all vertices in X ,
i.e., X ⊆ Γ(Y = Γ(X)). If B(Γ(Y ), Y ) is not a maximal
biclique, assume there exists a vertex v /∈ Y that can enlarge
the biclique as B(Γ(Y ), Y ∪ {v}). Then, v needs to have an
edge with every vertex in Γ(Y ), and also the same for X .
That means v is a common neighbor of X , which is contrary
to the definition of common neighbors Y . Thus, B(Γ(Y ), Y )
is a maximal biclique, and this representation omits X . □

Lemma 1 allows us to represent and enumerate the candi-
date maximal bicliques by their lower layers. We maintain the
candidate maximal bicliques each as a set of lower vertices
and the upper layers are implicitly involved as recursive
derivations. Each maximal biclique in the candidate set is
different in one recursive subproblem . The workload for
checking maximality is then transformed into determining the
uniqueness of the set of vertices in the lower layer. We derive
recursive subproblems by each set only at its first occurrence in
the entire recursion. Initially, each upper vertex in the bipartite
graph contributes to one candidate maximal biclique and we
keep its neighbors as the lower layer. Then, we obtain the
candidates in each subproblem by computing intersections of
lower vertex sets with the following lemma.

Lemma 2: Given two different sets of lower vertices, Y1

and Y2, corresponding to different candidate maximal bicliques
(B(Γ(Y1), Y1) and B(Γ(Y2), Y2)), their intersection Y1 ∩ Y2

also forms the lower layer of a candidate maximal biclique if
it is not empty.
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Proof: We have Γ(Γ(Y1)) = Y1 and Γ(Γ(Y2)) = Y2 by the
definition of maximal bicliques. Hence, Γ(Γ(Y1) ∪ Γ(Y2)) =
Y1 ∩ Y2 as only vertices in both Y1 and Y2 have edges
connected to all vertices in Γ(Y1) and Γ(Y2). It indicates that
the intersection of Y1 and Y2 is composed of the common
neighbors of Γ(Y1) ∪ Γ(Y2) in the upper layer, and when
Y1 ∩ Y2 ̸= ∅, it can represent a candidate maximal biclique
according to Lemma 1. □

Overall, only the lower layers are computed during the re-
cursive enumeration. The upper layer of each maximal biclique
can be obtained precisely once as the common neighbors
of the lower vertices. Figure 2b shows the recursion tree
for the lower-layer-based enumeration for Figure 1. In each
recursive subproblem Pi, we list the sets of lower vertices
corresponding to candidate maximal bicliques, and it initially
has the neighbor sets of u1, · · · , u5 in P0. We enumerate each
candidate and construct one recursive subproblem as a child
node by performing the intersection with other candidates
before it, and produce further candidates in the subproblem as
the resulting proper subsets. In the figure, each box represents
a maximal biclique, and dashed boxes indicate duplicated
bicliques that are skipped to derive subproblems. For example,
the candidate L4 produces L7 and L8 by intersecting with
L1 and L3 respectively. However, L8 can be safely pruned
because it represents the same biclique as L3. Additionally,
note that the candidate L3 can only have intersection results
identical to itself, resulting in no subproblem being derived
from it.

B. From Vertex Sets to Prefix Tree

To efficiently store the lower layers and identify duplicates,
we utilize the structure of prefix trees to maintain the results.
Formally, a prefix tree is a rooted tree, where every node in it
except the root is assigned a vertex and all outgoing links from
one node point to its children nodes with different vertices.
We build a prefix tree by all found sets of lower vertices
corresponding to maximal bicliques, where each set is inserted
as a tree path in the ascending order of vertex IDs. We name
it the result tree and use Tres for notation.

A new maximal biclique is determined by whether its lower
layer contributes to a new path in the result tree. For instance,
Figure 3a illustrates the result tree before processing the
recursive subproblem P2. Each path from the root to a blue
node represents the lower layer of one maximal biclique. It
includes the first four candidates in P0 as well as the candidate

Algorithm 2: Our proposed algorithm MBET
Input : G = (U, V,E)
Output: All maximal bicliques in G

1 Algorithm MBET(G)
2 sort vertices in V by non-ascending degrees
3 Tres ← ∅ // an empty result tree
4 compute the visiting order of U // lexicographical

order of Γ(u ∈ U)
5 foreach u ∈ U in the visiting order do
6 Tcand ← {Γ(u) ∩ Γ(u′) | u′ ∈ U ∧ u′ ≺ u}
7 FindLower(Tcand, Tres) // enumerate lower

layers of maximal bicliques
8 T ′

res, Tres ← partition Tres as inserting Γ(u)
9 CompleteUpper(Root(T ′

res) , U, ∅)
// compute upper layers and reclaim
obsolete part of Tres

in P1. Then, the path corresponding to L8 : ∗−v2−v6 already
exists, indicating that it is a duplicated result.

In each recursive subproblem, we also build a prefix tree
to maintain the lower layers of candidate maximal bicliques.
We name it the candidate tree and use Tcand for notation.
The derivation of a candidate maximal biclique is achieved
by using its corresponding path to build a new candidate tree
for the derived subproblem. The intersection of sets of lower
vertices is transformed into an extraction operation using a
path: we build a new prefix tree by connecting tree nodes
that have the same vertices in the path and preserving the
ancestor-descendant relationships of the nodes. Rather than
compare each node on other paths, this efficient extraction only
visits the necessary nodes . For instance, Figure 3b illustrates
the candidate tree for the subproblem P3, where dotted links
connect tree nodes with the same vertices. While performing
the extraction of L12 and following these links, the tree nodes
with v1 and v3 would not be visited.

Algorithm 2 shows the outline of our algorithm MBET.
Initially, the lower vertices are sorted by degrees and the result
tree is empty (Line 2-3). To optimize the memory consumption
of the result tree, we process maximal bicliques containing
each upper vertex sequentially in a visiting order, which is
the lexicographical order of their neighbors (Line 4-5). The
process of each vertex is divided into two steps. In the first
step, we build an initial candidate tree with upper vertices
before u in the visiting order, find lower layers of all maximal
bicliques derived from it and store them in the result tree
(Line 6-7). We then partition the result tree by inserting the
corresponding path of neighbors of u and split the tree into
two parts (Line 8). The first part contains paths that are no
longer used in the subsequent process. To optimize memory
usage, we traverse this portion of the result tree to compute
the upper layers of maximal bicliques and then reclaim the
memory occupied by these obsolete paths (Line 9).

IV. COMPUTING THE RESULT TREE

In this section, we present the first step of our approach
which finds the lower layers of maximal bicliques and stores
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them in the result tree. We detail the extraction operation for
the corresponding path of a candidate maximal biclique.

A. Efficient Extraction for Candidate Tree

Given a candidate tree representing the lower vertex sets in
a subproblem, we expect to construct the intersection results
for each set directly by vertices in the set. By traversing
the candidate tree and having a path corresponding to one
candidate to derive the subproblem, we can jump to other
nodes which have the same vertices in the path and use them to
build the extracted candidate tree. For instance, Figure 4 shows
a derivation by the path of L12. The dotted lines with arrows
indicate the relationships of extracted nodes in the derived
candidate tree. The dashed links and nodes form the same
path of L12 and are pruned from the new tree. Specifically,
we divide the process of extraction into three steps, aiming at
only visiting the necessary nodes in the candidate tree.

The first step is to build external information on the can-
didate tree before we choose any set of lower vertices to
extract. We build additional directed links, named jump links,
connecting all nodes with the same vertex so that we can
visit the required nodes by following the links. To maintain
the hierarchical structure of the tree, we assign each node a
unique index by performing a DFS traversal from the root, and
a range index which denotes the beginning and end of the
indices inside the subtree of that node. Moreover, the end of
the path for the lower layer of one candidate maximal biclique
is marked as an end-node, and we count how many end-
nodes existed in the subtree of each node. Then, for each path
indicating a new maximal biclique, we perform the extraction
efficiently by forking the required nodes directly. Keeping the
ancestor-descendant relationships, nodes with the same vertex
are merged to construct an extracted tree. At last, we reduce
the maintained information and prune the useless path.

B. Recursive Enumeration of Lower Layers

Algorithm 3 shows the algorithm for finding the lower
vertex sets of all maximal bicliques. The main procedure
FindLower accepts the candidate tree for traversal and the
result tree for storing the lower layer of all maximal bicliques
and checking uniqueness. Initially, the result tree is empty and
the candidate tree is constructed by computing intersections
of neighbor sets for each upper vertex in the graph. For every
node in a prefix tree, Father(node) and Child(node)
return the father node and the children list respectively. It in-
vokes Build and Traverse for each recursive subproblem
to find new maximal bicliques and extract derived candidates.
Throughout the process, we keep the following data in each
node in the candidate tree:

Algorithm 3: Find lower layers of all maximal bicliques
Input : Tcand, Tres
Output: update Tres by lower layers of maximal bicliques

1 Procedure FindLower(Tcand, Tres)
2 Cntdfs ← 0, P rev ← {}
3 Build(Root(Tcand))
4 Traverse(Root(Tcand), Tres)
5 Procedure Build(node)
6 idx← Cntdfs, Cntdfs ← Cntdfs + 1
7 nodeprev ← Prev[nodevid], P rev[nodevid]← node
8 nodecntE ← 1 if nodeisE else 0
9 foreach node′ ∈ Child(node) do

10 nodecntE ← nodecntE+Build(node
′)

11 nodeidx ← [idx, Cntdfs]
12 return nodecntE

13 Procedure Traverse(node, Tres)
14 if nodeisE then
15 path := nodes from root to node
16 if check uniqueness of path by Tres then
17 T ′

cand ← build an empty prefix tree
18 foreach pnode ∈ path \ root do
19 while pnode do
20 pnode′ ← find or create deepest node in

T ′
cand s.t. pnodevid = pnode′vid ∧

pnodeidx ⊂ Father(pnode′)idx
21 pnode′idx ← pnode′idx ∪ pnodeidx
22 pnode′cntE ← pnode′cntE + pnodecntE

23 pnode← pnodeprev
24 Reduce(Root(T ′

cand))
25 prune path in T ′

cand

26 if |T ′
cand| > 1 then

27 FindLower(T ′
cand, Tres)

28 foreach node′ ∈ Child(node) do
29 Traverse(node′, Tres)
30 Procedure Reduce(node)
31 if nodecntE >

∑
Child(node)cntE then

32 nodeisE ← true
33 foreach node′ ∈ Child(node) do
34 Reduce(node′)

• nodevid: the vertex ID which it is assigned.
• nodeprev: the previous node pointed by jump links.
• nodeidx: the range index of the subtree.
• nodeisE : whether it is an end-node or not.
• nodecntE : count of end-nodes within the subtree.
The procedure Build performs DFS starting from the root

node of the candidate tree. During the traversal, we keep the
last visited node for each vertex, ensuring that the jump links
have the order reversed to which we visit the lower layer of
candidate maximal bicliques. It uses a Prev array to track
the last visited node of each vertex. When entering a node,
the count of visited nodes (Cntdfs) is recorded in idx, and
nodeprev is pointed to the last visited node by Prev[nodevid].
Both the Cntdfs and Prev are then updated and the recursion
goes into the children nodes. While backtracking, we have the
count of end-nodes inside this subtree and save it in nodecntE .
The range index nodeidx is updated by previously recorded
idx and current Cntdfs which is the maximal index inside
this subtree.
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Fig. 5: Steps of extraction for Figure 4

We traverse the candidate tree again as shown in procedure
Traverse. When we encounter an end-node, it means the
path from the root to the current node forms the lower layer of
a candidate maximal biclique. Then, we check its uniqueness
by trying to insert the path to the result tree. If it indicates a
new maximal biclique, we use each node on the path to extract
a new candidate tree. We perform fork and merge operations as
described in Line 19-23, pnode starts with every node on the
path except the root. For each pnode, we look for a node with
maximum depth in the new tree where it is assigned with the
same vertex and satisfies that pnode’s range index is contained
by the node’s father. Or we create a new node if it does not
exist. We say such a node in the new tree is a forked node of
pnode. As the jump links have reversed order to our traversal,
the range indices decrease with pnode moving forward. The
forking of nodes in the jump links starting from a node on the
path can be computed by trying to add a child to the forked
nodes of nodes in those jump links starting from a previous
node on the path. Then we merge the range indices and the
counts of end-nodes into the forked node of pnode.

However, the marks for end-nodes are lacking because only
some of the end-nodes are forked. We then use the merged
counts to recover them. As shown in Line 30-34, we remark
end-nodes by performing DFS on the newly created tree. When
a node has a merged count more than the sum of its children,
it means either itself is an end-node or it is the last node
remaining for the paths corresponding to some candidates.
Therefore, it needs to be treated as an end-node in the extracted
candidate tree. In the last step, we need to prune the path in
the extracted tree which is as same as path because we only
need to keep proper subsets. We prune the path from the last
node corresponding to path. We minus the count of end-nodes
in all nodes on the path by the count in the last node, and then
remove those nodes with zero counts.
Example of an extraction. Figure 5 depicts the steps of
the extraction by the candidate path {v2, v4, v5} in Figure 4.
We illustrate the jump links in green and the end-nodes in
blue. For each node in step (a), we show the range index in
square brackets and the count of end-nodes in parentheses. For
instance, there are 6 nodes in the subtree of the node assigned
v1 and two of them are end-nodes, and it is the first node
visited by the DFS. So the range index of it is [1, 6] and the
count is 2.

Then, the range indices are merged in step (b) and the counts
are updated in steps (b) and (c). The dashed arrows depict the

Algorithm 4: Complete maximal bicliques by result tree
Input : G = (U, V,E), Tres
Output: Report all maximal bicliques

1 Procedure CompleteUpper(node, X, Y )
2 Y ′ ← Y ∪ nodevid
3 X ′ ← X ∩ Γ(nodevid)
4 if nodeisE then
5 report B(X ′, Y ′)
6 foreach node′ ∈ Child(node) do
7 CompleteUpper(node′, X ′, Y ′)

merging of nodes assigned with the same vertices in the new
tree. Two nodes assigned v2 are merged into a single node as
it is the first vertex in path, and v5 exists in two nodes in the
new tree because there are two nodes of v5 in the subtree of
a node assigned v4 and one directly in the subtree of a node
assigned v2.

In step (c), we remark the end-nodes which correspond to
sets {v2}, {v2, v5} and {v2, v4, v5}. Note that the set of lower
vertices {v1, v2, v4, v5} results in the same path {v2, v4, v5}
in the extracted tree. The dashed nodes in Figure 5 denote
the removal of useless nodes due to the same path. Hence,
only sets of {v2} and {v2, v5} remain in the final extracted
candidate tree.
Correctness analysis. Overall, once a unique path corre-
sponding to a candidate maximal biclique is found in the
candidate tree and the extracted tree has nodes other than the
root, we move to the next level of the recursion, invoking
Build and Traverse continuously. Each time we enter the
procedure FindLower, we have a candidate tree consisting
of the lower layers of all candidate maximal bicliques in the
recursive subproblem. Initially, we build a candidate tree with
the neighbor set of each upper vertex in the bipartite graph. By
traversing in the candidate tree, we compute the intersection of
each pair of sets of lower vertices for the candidates and derive
subproblems for non-empty results. This recursive process will
compute the intersections of neighbor sets of 2|U(G)| sets of
upper vertices, which correspond to the common neighbors of
any subset of U(G). According to Lemma 1, any maximal
biclique is formed by the common neighbors of a subset of
U(G) and the common neighbors of the common neighbors.
Therefore, our recursion can find all the maximal bicliques in
the given bipartite graph.

V. COMPLETING THE UPPER LAYER

After the first step of our approach, we obtain the lower
layers of maximal bicliques in the result tree. The upper layers
are then computed through a traversal of the tree. Additionally,
we present optimizations for the intersection of vertex sets in
this section.

A. Traverse the Result Tree

Remind that each path from the root to an end-node forms
the lower layer of a maximal biclique, and the upper layer can
be directly computed as the common neighbors of vertices in
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Fig. 6: Intersection memoization during traversal

the path. Hence, we can perform a DFS to traverse the result
tree and maintain both layers of the biclique while visiting
each node. Algorithm 4 outlines the process for reporting all
maximal bicliques through the traversal. We employ two vertex
sets, X and Y , to store both layers of the biclique during
traversal. The algorithm begins from the root node, with Y =
∅ and X = U representing the set of common neighbors. Each
time we visit a node, the assigned vertex of it is added to Y
and X is intersected by the neighbors of the vertex (Line 2-3).
When a node is an end-node, the current biclique is reported
as a maximal result (Line 5). The process is then repeated for
each child of the node, using the updated sets X ′ and Y ′.

In figure 6a, we show the traversal of a partial result tree
from Figure 1. Each blue node represents an end-node for the
lower layer of a maximal biclique. For the top two nodes, we
have X ′

1 = {u1, u2, u5}, Y ′
1 = {v1} and X ′

2 = {u1, u2, u5},
Y ′
2 = {v1, v2} respectively. When traversing the node assigned

with v3, we obtain X ′
3 = {u1, u5} as the intersection of

X ′
2 and {u1, u5} (i.e., v3’s neighbors). Furthermore, we visit

its direct child node with v5, computing the intersection
of its neighbors and X ′

3, which reports a maximal biclique
B({u1, u5}, {v1, v2, v3, v5}).

The elimination of duplicated computation for the upper
layer is achieved as each node in the result tree is visited
exactly once, and the total workload is further reduced through
the merging of prefixes. Inspired by the computation of upper
layers during the traversal, the following lemma is intuitively
derived, leading to our optimizations in the next part.

Lemma 3: Given two upper vertex sets X ′ and X ′′ that are
computed from the result tree when visiting the tree nodes p′

and p′′ respectively, and p′ is an ancestor node of p′′, then
X ′′ ⊆ X ′.

B. Optimizations for Neighbor Intersections

Based on Lemma 3, we propose optimizations based on the
memoization of intersection results and the compression of
neighbor sets, exploiting the ancestor-descendant relationships
in the result tree.

Intersection memoization. In practice, memoization is an
optimization technique that involves trading space for time
by storing intermediate results in memory for future use. We
leverage this technique by caching some sets of common
neighbors within specific subtrees of the result tree. More
precisely, for any given subtree, we can store the computed
sets of common neighbors on certain direct children of the root
node, and then utilize them for the intersection computations
on some grandchildren nodes.

v1 u1 u2 u5 comp.
v2 1 1 1 {0,3}{2,1}
v3 1 0 1 {0,1}{2,1}
v4 0 1 1 {0,2}{2,1}
v5 1 1 1 {0,3}{2,1}
v6 1 1 0 {0,3}

path comp.
v1, v2, v5 {0,3}{2,1}
v1, v2, v5, v6 {0,3}
v1, v2, v3, v5 {0,1}{2,1}
v1, v2, v3, v4 {2,1}
v1, v2, v3, v4, v5 {2,1}

TABLE II: Neighbors in bits and compression

Figure 6a also illustrates the memoization during the traver-
sal. The vertex in each node always has a greater ID than its
father, and we traverse into its children in the descending order
of their vertex IDs. We mark the time points of visiting some
nodes as T1 · · ·T4 in the figure, and T ′

5 denotes the time point
of backtracking from the subtree of the node. We use dashed
lines with arrows to indicate nodes that share the same vertex
in their siblings’ grandchildren. In the example, we can reuse
the memoized sets of common neighbors of v4 once and those
of v5 three times, and the last node of v5 utilizes the common
neighbors in the previous node under v3, which is deeper in
the tree.

We maintain a stack for each vertex to store the memoized
sets. The set of common neighbors in a node is added
to the stack of its assigned vertex if it needs to be kept,
while it is removed after the traversal leaves its parent node.
Figure 6b shows the state of stacks at the marked time
points. At T1 and T2, we push Γ({v1, v2, v5}) = {u1, u2, u5}
and Γ({v1, v2, v4}) = {u2, u5} respectively. Then at
T3, Γ({v1, v2, v3, v5}) is computed by Γ({v1, v2, v3}) ∩
{u1, u2, u5}, and the result {u1, u5} is also pushed to
the stack. Afterward, we can use this result to compute
Γ({v1, v2, v3, v4, v5}) at T4, and it does not update the stack
due to no siblings’ grandchild being assigned with v5. Finally,
before leaving the subtree at T ′

5, the top element in the stack
of v5 is removed, and both v4 and v5 have only one memoized
set in their stacks.

To identify the sets of common neighbors that require
memoization, we traverse the result tree and keep track of
the last visited node assigned with each vertex. A node is
marked for memoization if the lowest common ancestor of
itself and the last visited node of the same vertex is its parent.
During the procedure CompleteUpper, we store the sets
of common neighbors in stacks as necessary, and the size of
memoized sets decreases with the increasing depth of the tree.
Neighbors compression. For each direct child node of the root
of the result tree, the set of common neighbors X ′ is composed
of the neighbors of the vertex on that node. Since the sets of
common neighbors in all nodes beneath it are subsets of X ′,
we use indices in the sorted list of X ′ to represent the vertices
in each subset. Specifically, we employ a bitset to store the
common neighbors, where each vertex in X ′ is represented by
a single bit to indicate the presence or absence.

Table II demonstrates the use of bitsets to represent sets
of common neighbors for the partial result tree in Figure 6a.
For the neighbors of v1 (i.e., u1, u2, and u5), we use three
bits to indicate the state of each vertex. For example, the set
of common neighbors for v1 and v4 is {u2, u5}, which is
represented by the bitset 011. We then divide each bitset based



on the number of bits that can be held by an integer and convert
consecutive bits to integers where the lower bits denote smaller
indices. We store each integer in a pair, along with the index
of its first bit. For instance of 2 bits here, the neighbors of v4
are represented as {0, (10)2 = 2} and {2, (01)2 = 1}.

The compressed representation of neighbor lists for each
vertex is different in every subtree under the root of the result
tree, owing to the different assigned vertex on the root node
of the subtree. Hence, we only build compressed neighbor
lists for vertices that exist in the subtree. The vertex set
X in Algorithm 4 is also replaced by a compressed list,
and computing the intersection is to perform a bitwise AND
operation for each pair of the same beginning index and
append the non-zero results into a new compressed list.

We combine the compression of neighbors with the in-
tersection memoization. We push those compressed neighbor
lists into stacks if they can be used for further computa-
tions. Table II shows some examples of intersection results.
For instance, the common neighbors of path {v1, v2, v5} are
{u1, u2, u5}, and the compressed format is {0, 3}{2, 1}, where
the second pair is removed when we traverse into v6 and the
third bit becomes zero. To obtain the common neighbors of
{v1, v2, v3, v4, v5}, we compute intersection of {2, 1} from
{v1, v2, v3, v4} and {0, 1}{2, 1} from the stack of v5, and only
the second pair remains.

VI. PRE-PROCESS AND SPACE OPTIMIZATION

To enhance the performance of our approaches, we propose
pre-processing techniques that are based on the order of
vertices and introduce methods for reducing space usage.

A. Reclaim Obsolete Memory

During the recursion for finding the lower layers of maximal
bicliques, the order of lower vertices in a path in candidate
trees is determined by their ascending vertex IDs. Both the
insertion into the result tree and the extraction operation for
derivation preserve the order of vertices in paths. To enhance
the merging of prefixes on prefix trees, we sort all the lower
vertices on the graph by non-ascending degrees and assign
new vertex IDs to each, ranging from 0 to |V |.

Remind that each candidate tree is traversed using DFS to
obtain the lower layers of candidate maximal bicliques, we
define the order of visiting end-nodes in a candidate tree
as the visiting order for the paths of candidate maximal
bicliques. Considering an initial candidate tree built using the
neighbors of each upper vertex on the graph, we assign each
upper vertex to the end-node of a path that corresponds to its
neighbors in the tree. For instance, we mark the upper vertices
based on the paths of their neighbors in Figure 7a which is
constructed from Figure 1 after sorting and assigning new
vertex IDs to the lower vertices. According to their assigned
nodes, we obtain the visiting order for all upper vertices, which
is {u2, u1, u4, u5, u3} in this example. We use notations like
u2 ≺ u1 to denote the precedence in this order. Based on
properties of prefix trees, the visiting order for upper vertices
coincides with the lexicographical order of their neighbors.
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As described in Algorithm 2, we process the upper vertices
sequentially in the visiting order. By building an initial candi-
date tree using the neighbors of vertex u, we ensure that all the
found maximal bicliques derived from it have u in the upper
layer. Furthermore, after the recursion process, we partition
the result tree based on the neighbors of u and remove the
part which is no longer used to reclaim memory. We apply
the same definition of the visiting order to the result tree and
present the following lemma.

Lemma 4: Let u be an upper vertex, p be a path correspond-
ing to Γ(u), and P be the set of all paths before p in the
visiting order of the result tree. All candidate paths generated
in the recursive subproblems derived from p do not include
any p′ ∈ P for uniqueness checks.

Proof: Considering the extraction operation for derivation,
p forks nodes from the prior paths in the visiting order where
the nodes have the same vertices in p, and the traversal by DFS
visits the children of a node in the ascending order of their
vertex IDs. Hence, before the last pruning step in §IV-A, p is
the first path in the visiting order of the extracted tree. Inserting
the extracted candidates into the result tree only contributes
to paths after p in the visiting order, and the same manner
establishes recursively for derived subproblems. Therefore, the
uniqueness checks for candidates in subproblems will never
use any p′ ∈ P . □

Consequently, when selecting each u ∈ U in the visiting
order, the neighbors of u can partition the result tree into two
parts, where the first part contains only paths that are no longer
required and can be safely destroyed. However, there is still
a portion of the result tree that remains in memory until all
upper vertices have been processed. In the subsequent part, we
will explore how to enable the complete removal of the result
tree each time we finish processing one upper vertex.

B. Narrow the Search Space

As a side-effect of MBET, there is no limitation on the
upper vertices during the first step as we only maintain the
lower layers. To address this issue, we propose a variant
of our algorithm with an additional restriction on the upper
vertices. Specifically, when starting from each upper vertex
u, we enumerate maximal bicliques with the upper vertices
before u in the visiting order. Note that during this process, if
a biclique can be enlarged by a vertex u′ that meets u ≺ u′,
then u′ must have edges connected to all vertices in the
lower layer of the biclique and we should omit such candidate
bicliques. To implement this restriction, we slightly modify



Algorithm 5: Space optimized algorithm MBETM
Input : G = (U, V,E)
Output: All maximal bicliques in G

1 Algorithm MBETM(G)
2 sort vertices in V by non-ascending degrees
3 compute the visiting order of U with intervals
4 foreach u ∈ U in the visiting order do
5 Tres ← {Γ(u)}
6 Tcand ← {Γ(u) ∩ Γ(u′) | u′ ∈ U ∧ u′ ≺ u}
7 FindLower(Tcand, Tres) with extended check using

the intervals for deduplication
8 CompleteUpper(Root(Tres) , U, ∅)

the uniqueness check while traversing the candidate tree. In
Line 16 of Algorithm 3, we also check that the set of assigned
vertices on path is not a subset of the neighbors of any vertex
after the initial selected upper vertex in the visiting order.

Lemma 4 is also established as we select u ∈ U in the
visiting order, and the result tree generated by u will not
include bicliques with upper vertices after u so that it can be
safely destroyed. Moreover, we take advantage of the visiting
order to speed up the additional workload for the restriction
on upper vertices. Specifically, as the order of upper vertices
corresponds to end-nodes on a prefix tree, some consecutive
vertices may have the same prefix for their neighbors in the
tree. For each lower vertex v, we save some intervals of indices
over the visiting order to indicate that v is a neighbor of those
upper vertices. Each interval is recorded as large as possible.
Figure 7b depicts the intervals that meet the candidate tree in
Figure 7a. The vertex v4 has neighbors {u1, u2, u5}, hence it
covers the first, second, and fourth indices of the visiting order.
We merge them as two intervals [0, 1] and [3, 3] for v4, and
similarly, v1 is represented by only one interval [0, 4] which
covers all the upper vertices. Therefore, a path is a subset
only if the intervals of every vertex in path cover the same
index which is greater than the index of the initially selected
upper vertex. For example, assuming we have a set of lower
vertices {v1, v4} generated from the candidate tree initialized
by u4, whose index is 2, it is not a result currently as the
index 3 is covered by intervals of both v1 and v4.

We present the optimized algorithm, MBETM, in Algo-
rithm 5. Both the result tree and the candidate tree are
initialized each time for a selected upper vertex (Line 5-6).
During the recursion, we check for subsets using the intervals
and perform the completion of the upper layers on the entire
tree (Line 7-8). This algorithm requires additional computation
time for generating the intervals and checking uniqueness, and
also requires more initial memory for storing the intervals.
However, it greatly reduces the memory usage of the result
tree as it is limited to each upper vertex. It is a viable option
for large graphs where memory usage is a concern.

C. Complexity Analysis

Since candidate trees serve a vital purpose in our recursive
enumeration, we first discuss the size bound for each candidate
tree. We use notations dmax(U), dmax(V ), and dmax to

represent the maximum degree of each layer and the entire
graph, respectively, and use notation d2max for the maximum
2-hop degree. The initial candidate tree for each upper vertex
is built by its neighbors and the intersections with other
vertices. Hence, the length of a candidate path is bounded by
O(dmax(U)), and the length of jump links from a tree node
is bounded by O(dmax(V )). Consequently, the overall size
of each candidate tree is O(d2max). Note that the merging of
prefixes can omit many nodes in practice, and the extraction
process reduces the tree size as the recursion proceeds.

Given a bipartite graph with the number of maximal bi-
cliques B, the total time complexity of MBET and MBETM
is O(Bd3maxlog(d2max)). Here log(d2max) is related to the
structure of prefix trees. An additional workload is required to
insert and search for outgoing links of one tree node, and the
outgoing degree is bounded by the maximum 2-hop degree of
lower vertices. We then discuss the complexity of computing
the lower and upper layers, respectively.

Each time we find the lower layer of a new maximal
biclique, we need to perform an extraction operation to build a
new candidate tree, traverse the tree and check the uniqueness
of each candidate path on it. The extraction process starts
from each node on the path corresponding to the maximal
biclique and visits all nodes following the jump links. For
the jump links starting from one node, we visit every node
on all previous jump links at most once. Hence, the total
time of the extraction for a path is O(d2max(U)dmax(V )). To
check the uniqueness of each candidate path, MBET requires
O(|path|) for the insertion into the result tree and MBETM
requires an extra O(|path|dmax(V )) for the extended check
using intervals where each interval is used at most once.
The complexity of checking the uniqueness of all paths on a
candidate tree is O(dmax(U)d2max(V )), resulting in an overall
cost of O(B · d3max) for the enumeration of lower layers.

Completing the upper layer for each maximal biclique
requires O(dmax(U)dmax(V )) to find the common neighbors
of the lower vertices. We visit each node on the result tree
once and both the compression and intersection operations
have a linear time complexity corresponding to the length of
the neighbor lists. The memoization on prefix trees reduces
duplicated intersection computation, and the average length
of the compressed lists is further decreased as we eliminate
pairs of all-zero bits. As a result, the cost of completing all
the upper layers is much smaller in practice than the overall
bound O(B · d2max).

The space complexity depends on the result tree and can-
didate trees. During the recursion for each upper vertex, there
are at most O(dmax(V )) candidate trees in memory at the
same time, as each derivation inherently adds one upper vertex
to all the candidate maximal bicliques in the extracted tree.
The total space usage for candidate trees is O(d3max) but the
average tree size is much smaller in practice. As for the result
tree, MBET has no limitation for the search space, resulting
in a space usage of O(

∑
(|V (B)|)). MBETM utilizes a new

result tree for each upper vertex, leading to a space usage
of O(maxu

∑
(|V (B̄(u))|)), where B̄(u) denotes maximal



Dataset |U | |V | |E| |MB| iMBEA PMBE FMBE ooMBEA MBET MBETM
YouTube 30,087 94,238 293,360 1,826,587 641 905 196.4 57.93 4.96 5.25

BibSonomy 204,673 767,447 2,499,057 2,507,269 7169 5694 691.6 82.62 9.21 9.43
StackOverflow 96,678 545,195 1,301,942 3,320,824 15298 110083 17028.0 426.22 11.40 14.67

DBLP 1,953,085 5,624,219 12,282,059 4,899,032 — — 35.9 26.43 14.63 17.31
IMDB 303,617 896,302 3,782,463 5,160,061 35312 11714 1557.5 103.92 19.72 21.20

Amazon 1,230,915 2,146,057 5,743,258 7,551,358 — 119745 93436.3 340.81 38.34 49.04
BookCrossing 105,278 340,523 1,149,739 54,458,953 54778 44647 23240.2 3976.42 213.29 228.42

Github 56,519 120,867 440,237 55,346,398 123020 — 48292.8 4384.24 203.56 258.71
TV Tropes 64,415 87,678 3,232,134 19,636,996,096 ∼2m (24h) ∼2m (24h) ∼84m (24h) ∼594m (24h) OOM (4h) ∼5690m (24h)
LiveJournal 3,201,203 7,489,073 112,307,385 >15b <1m (24h) <1m (24h) ∼2m (24h) ∼941m (24h) OOM (6h) ∼2078m (24h)

TABLE III: Data statistics and overall execution time (seconds)

bicliques whose lower layers are formed by u and other
vertices before u in the visiting order.

VII. EXPERIMENTS

A. Setup

Datasets. We choose 10 real-world datasets from KONECT
[30] for our experiments. The detailed statistics are shown in
Table III. We show the number of upper vertices (|U |), the
number of lower vertices (|V |), the number of edges (|E|),
and the number of maximal bicliques (|MB|) in the table.
Algorithms. We compare our algorithms MBET and MBETM
with four prior works in recent years: iMBEA [19],
PMBE [21], FMBE [20], and ooMBEA [22]. All of them
run against one single core. For iMBEA and PMBE, we
re-implement them in C++, and our versions achieve better
performance than their open-source version and Java version,
respectively. We also implement FMBE by ourselves as they
do not provide code. For ooMBEA, we adopt their open-source
code for evaluation. All the algorithms are compiled using
GCC with the optimization level set to O3. Each algorithm
may swap the two sides of graphs or reorder the vertices for
its convenience of faster enumeration. All the experiments are
conducted on a computer equipped with AMD Ryzen Thread-
ripper 3990X CPU and 128GB RAM. For each algorithm,
we report the average result over 10 runs and terminate the
algorithm if it runs more than 48 hours.

B. Overall Comparison

Table III shows the time of all algorithms in seconds, and
”—” means it cannot be finished within 48 hours. Besides the
normal graphs, we also examine the overall running on TV
Tropes and LiveJournal, which both have several billions of
maximal bicliques and all algorithms cannot finish in a few
days. We report the average number of maximal bicliques each
algorithm enumerates within 24 hours.

In general, our algorithms outperform others on all the
datasets. For iMBEA and PMBE, both of them need to take
more than 24 hours to complete the enumeration for Amazon,
Github, and DBLP, and they are always slower than FMBE
and ooMBEA. FMBE takes the approach of reducing the initial
candidate set by two-hop neighbors, and performs exception-
ally well on the sparsest graph, DBLP. On StackOverflow,
BookCrossing, and Github, our algorithms significantly out-
perform FMBE and ooMBEA by several orders of magnitude.
In addition, on LiveJournal, MBETM is the only algorithm that
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Fig. 8: Execution time on subgraphs

can enumerate maximal bicliques in billions scale. Note that
MBETM has an affordable overhead compared with MBET
as it needs extra workloads due to the extended check for
deduplication. But it solves the problem of MBET running
out of memory on graphs with a vast number of results. In the
following experiments, we omit the algorithms iMBEA and
PMBE as they are hard to handle large graphs.
Scalability and varying density. We examine the scalability
of algorithms and depict the trends of execution time in
Figure 8a. We randomly select 20%, 40%, 60% and 80% of
vertices for both layers of the graph and built the induced
subgraph by them on the dataset Amazon. Our proposed
algorithms are always faster than state-of-the-art algorithms.
As the size of graphs grows, the gap between ooMBEA
and our algorithms is expanding, meaning that MBET and
MBETM can be easier to handle larger datasets compared to
other algorithms.

To evaluate the effects of density, we utilize the dataset TV
Tropes to generate subgraphs by randomly selecting 3%, 15%,
30%, 50%, and 70% of the edges while keeping all vertices in
the original graph. As depicted in Figure 8b, ooMBEA exhibits
similar execution times to our algorithms on sparse graphs
but gets closer to FMBE as they become denser, verifying the
results of overall execution time on the datasets BookCrossing
and Github. Regarding our algorithms, MBETM is always a
little slower than MBET on all induced graphs, indicating that
the overhead is irrelevant to either scalability or density.

C. Breakdown Analysis

To take a deeper dive into our algorithms, we break down
one execution into three parts: pre-processing, finding the
lower layers, and then the upper layers, as shown in Table IV.
Both MBET and MBETM use the same technique of prefix
trees to enumerate, but the search space is different.



Dataset MBET MBETM
Pre Lower Upper Pre Lower Upper

YouTube 0.05 4.04 0.87 0.07 4.30 0.88
DBLP 4.64 6.90 3.09 6.99 7.21 3.11
IMDB 0.81 10.74 8.17 1.22 11.03 8.94

Amazon 1.77 20.69 15.88 2.59 24.07 22.37
Github 0.08 179.84 23.65 0.11 240.48 18.13

TABLE IV: Breakdown analysis
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Fig. 9: Effects of improvements for intersection

Time of each part. For pre-processing, both MBET and
MBETM sort vertices and compute the visiting order, while
MBETM needs more time to compute and save the intervals
over the order. We do not need to visit each neighbor of
the upper vertex in MBET when it is the only vertex in a
subtree that can determine its position in the visiting order.
It can lead to a 1.5x difference in the time of pre-processing.
Finding the lower layer of all maximal bicliques is the most
fundamental part of our algorithms. It takes up to 93% of
the overall time for the graph Github. In this part, MBETM
needs more time than MBET since they enumerate the same
number of bicliques while MBETM has an extended check for
uniqueness. The difference in time of completing the upper
layers varies in different graphs. MBETM needs more time
on Amazon but less time on Github. This is because the
result tree in MBETM is computed entirely and destroyed
immediately each time we find the maximal bicliques for one
upper vertex. The search space and traversal on the result
tree are narrowed. However, on the larger graph Amazon,
the advantages of merging prefixes and improvements for
intersections in MBETM are not as effective as in MBET.
Optimizations for the neighbor set intersection. We also
evaluated the impact of our optimizations on the intersection
of neighbors. As described in §V-B, we propose two methods:
memoization of previous intersection results and bitwise com-
pression for neighbor lists. We first run the version without
both methods and then with only one of them each. We use
MBET for the comparison, as MBETM does not alter the logic
of this process. The results are presented in Figure 9, where
the height of each bar is normalized to the fastest one, and the
actual time is labeled on the top.

Across all datasets, using memoization leads to faster execu-
tion time compared to the version without any optimizations.
However, it is worth noting that compressing the neighbors
often introduced a greater speedup. This is because while
memoization saves time in computing intersections, it requires
additional time and memory to store and access the memoized
results. On the other hand, bitwise compression significantly

Dataset FMBE ooMBEA MBET MBETM
Youtube 73 36 178 112

BibSonomy 583 151 671 615
StackOverflow 350 432 424 379

DBLP 3564 980 3560 3771
IMDB 784 508 836 800

Amazon 1601 1308 1901 1658
BookCrossing 265 189 4295 867

Github 106 102 2038 309
TV Tropes (48h) 418 1333 >128G 22432
LiveJournal (48h) 15949 12351 >128G 44299

TABLE V: Memory consumption (MB)

reduces the number of comparison for intersection compu-
tations and save more time as the size of the neighbor list
is reduced. Consequently, employing memoization with com-
pressed neighbors further improved performance. In practice,
combining both optimizations achieved a maximum speedup
of more than 3× on the dataset Github.
Effects of vertex orders. We also discuss the effects of
different orders of vertices on the execution time. We run
MBET with random order of vertices and also adopt the
unilateral order from ooMBEA for comparison. Figure 10a
shows the execution time after pre-processing, normalized to
the time we report in Table IV. The random order always
takes more time than sorting as non-ascending degrees, but
for DBLP, the unilateral order has a little better performance
as it is designed for sparse graphs.

However, there is a big gap in dense graphs such as Github,
where using unilateral order even performed worse than the
random order. An important reason is that our algorithms
depend on the merging of prefixes and the order of non-
ascending degrees can produce more common paths in prefix
trees. Note that the unilateral order aims at minimizing the
number of two-hops neighbors that do not align with the idea
of merging. Also, it takes more cost to sort as the unilateral
order than by degrees. As a result, we adopt the non-ascending
degrees for sorting vertices in our algorithms.

D. Memory Consumption

Table V shows the memory usage on all the datasets,
reported as the high-water mark of a Linux process for each
algorithm. We can see that our algorithms have more space
usage than existing approaches since we utilize the prefix
tree structure to accelerate the enumeration process. Note
that MBETM reduces the space usage of MBET in many
cases such as the dense graph Github and the huge graph
LiveJournal.
Varing density. We also examined the memory usage for
algorithms by varying graph densities. Figure 10b shows the
relationship between memory and density for all algorithms
on the subgraphs of TV Tropes, as used in Figure 8b. From
sparse to dense, the memory requirements for our algorithms
exhibit exponential growth. While initially MBETM requires
slightly more memory than MBET due to pre-processing, the
benefit of narrowing the search space becomes increasingly
evident as the density increases.
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Fig. 10: Effectiveness comparisons

E. Parallel Enumeration

We simply extend our algorithm MBETM into a multi-
thread environment and compare it with the existing parallel
enumeration algorithm, ParMBE [20]. After the pre-processing
in MBETM, each thread fetches one upper vertex in the
visiting order and performs the enumeration starting from it.
Figure 11 shows the execution time of MBETM and ParMBE
in 64 threads. Our algorithm outperforms the existing parallel
algorithm in most datasets, except the DBLP where the pre-
processing takes much time and occupies the major portion of
the whole execution.

VIII. RELATED WORKS

Maximal biclique enumeration. Earlier approaches to finding
maximal bicliques in bipartite graphs often involve transform-
ing the problem into other domains, such as maximal clique
enumeration in unipartite graphs [31], [32] and frequent closed
itemset mining in transactional databases [33]–[35]. Inspired
by the Bron-Kerbosch algorithm [23] for the problem of
maximal clique enumeration, [19] proposes iMBEA with a
depth-first search manner for enumerating maximal bicliques.
Based on that, PMBE [21] adopts the pivot pruning technique
to reduce the search space, and ooMBEA [22] explores the
order-based and batch-pivot-based techniques to achieve better
performance, especially on sparse graphs. For concurrent
enumeration of maximal bicliques, [36] clusters the graph into
small subgraphs and processes different subgraphs in parallel
using the MapReduce framework. Additionally, [20] proposes
ParMBE with improvements in reordering vertices, and the
sequential version, FMBE, is also introduced showing that it
achieves practical speedup.

Enumerating maximal bicliques in unipartite graphs has also
been the subject of research for many years. The Consensus
algorithm [37] shares a similar idea of focusing on the lower
layer of maximal bicliques. It maintains a set of simple bi-
cliques and gradually expanding it through transformations of
absorption and consensus adjunction. However, the algorithm
neither employs a depth-first search manner nor gives attention
to the organization of intermediate results. Moreover, [38]
introduces the MineLMBC algorithm, based on the divide-
and-conquer method, which prunes the search space by size
constraints during recursion. [39] discusses maximal induced
bicliques in general graphs, and solving the enumeration
problem with maximal independent sets.
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Various biclique problems in bipartite graphs. Some other
research works focus on mining constrained bicliques in bipar-
tite graphs. [40] investigates bicliques with a size constraint t
for one layer while maximizing coverage on the other layer,
and proposes a heuristic algorithm for finding the top-k results.
One more classic problem is finding bicliques with fixed-size
vertices, known as the (p, q)-biclique problem. [41] discusses
the density and other properties of (p, q)-bicliques in bipartite
graphs. [12] presents an enumeration algorithm suitable for
large-scale sparse graphs, with optimizations such as pre-
allocated arrays and vertex renumbering. A special case where
both layers have only two vertices is studied as counting
butterflies [42], [43], which is also a fundamental structure.

Another biclique problem is finding the largest biclique
where both layers have the same size (maximum balanced bi-
clique), which is proven to be NP-hard in bipartite graphs [44].
To tackle this problem, both heuristic algorithms [45], [46]
and exact algorithms [16], [47] have been proposed. Another
NP-hard problem is finding the biclique with the maximum
number of edges [48] (maximum edge biclique). [49] proposes
an integer programming-based method, and [8] presents a
progressive bounding framework to narrow the search space.
Recently, an extended problem has been studied in [50], which
aims to find the maximum biclique containing a specific vertex
by online algorithms and index-based techniques.

IX. CONCLUSION

In this paper, we study the problem of enumerating maximal
bicliques on bipartite graphs. We present a method separating
the search process into two steps and utilizing prefix trees for
efficient enumeration. Our proposed algorithm, called MBET,
introduces the candidate tree and the result tree to find and
save the lower layers of all maximal bicliques in the first step.
Then it uses the saved results to compute the upper layer of
each maximal biclique. We also propose a variant algorithm,
MBETM, adding some extra workloads to significantly save
memory usage. Extensive experiments are conducted on real-
world datasets to demonstrate the superior performance of our
methods compared to existing algorithms.
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